Runtime verification and monitoring of embedded

systems

C. Watterson and D. Heffernan

Abstract: Ensuring the correctness of software applications is a difficult task. The area of runtime
verification, which combines the approaches of formal verification and testing, offers a practical but
limited solution that can help in finding many errors in software. Runtime verification relies upon
tools for monitoring software execution. There are particular difficulties with regard to monitoring
embedded systems. The concerns for arranging non-intrusive monitoring of embedded systems in a
way that is suitable for use in runtime verification methods are considered here. A number of exist-
ing runtime verification tools are referenced, highlighting their requirement for monitoring sol-
utions. Established and emerging approaches for the monitoring of software execution using
execution monitors are reviewed, with an emphasis on the approaches that are best suited for
use with embedded systems. A suggested solution for non-intrusive monitoring of embedded
systems is presented. The conclusions summarise the possibilities for arranging non-intrusive
monitoring of embedded systems, and the potential for runtime verification to utilise such monitor-

ing approaches.

1 Introduction

To ensure that software applications operate satisfactorily in
their final environment, extensive and costly efforts are
involved during the software development cycle. Despite
the evolution of improved software development practices,
used to increase the correctness of the software design and
implementation, the client users in the ‘real world’ fear
failure of the system at some point. It is possible to persist-
ently monitor software execution in its final environment,
checking the observed behaviour and performance against
specified rules. This approach of monitoring and checking,
which can be termed runtime checking if the monitoring
outputs are checked at runtime, can be used for various pur-
poses. Potential applications of runtime checking include
testing, debugging, verification, logging of errors, attempts
at real-time fault recovery of the system to a safe state
and maintenance/diagnosis procedures in the field. The
focus of this paper is on the consideration of runtime check-
ing mechanisms that are suitable for runtime verification of
software in embedded systems.

Throughout this paper, the system in which monitoring,
runtime checking, or runtime verification is performed is
referred to as the ‘target system’, and the software appli-
cation whose execution is being monitored is referred to
as the ‘target application’. The term ‘monitoring’ in this
paper is used to refer to a specific monitoring task, the moni-
toring of software execution. Although the term monitoring
can be used synonymously with observing, here monitoring
is used to mean the combined task of observing and making
use of the observations to ‘keep track of’ the target’s

© The Institution of Engineering and Technology 2007
doi:10.1049/iet-sen:20060076
Paper first received 13th December 2006 and in revised form 3rd July 2007

The authors are with Centre for Telecommunications Value-Chain Research
(CTVR), Department of Electronic and Computer Engineering, University of
Limerick, Limerick, Ireland

E-mail: conal.watterson@ul.ie

172

behaviour. Observing the target software’s execution is by
definition practised at runtime, but the results of the obser-
vations can be examined later offline. This is known as
offline monitoring; whereas when observed data are exam-
ined at runtime, the task is referred to as online or
runtime monitoring. Such an approach is also referred to
simply as monitoring; the term ‘monitoring’ will refer to
runtime monitoring of software execution unless otherwise
qualified.

Embedded systems can present particular challenges for
monitoring. System internals are not easily observable, as
many device features are incorporated deep within
complex chip packages. This hinders the observation of
software execution in such devices. Many embedded
systems have limited resources or have real-time software
requirements that must adhere to strict execution deadlines.
These traits result in a need to minimise the overhead of
monitoring; high overhead could compromise core system
resources or affect scheduling, causing interference to the
target application. The two concerns examined in this
paper are: (1) the monitoring mechanism be capable of suf-
ficiently observing the internal operation of the target
system and (2) the overhead of the monitoring scheme be
minimised so as to avoid interference with the normal beha-
viour of the target system.

The issue of what must be observed is a concern related to
(1); this is considered here in the context of runtime verifi-
cation. Runtime verification, detailed by Havelund and
Goldberg [1], is a method of checking the correctness of
programs and is described by Havelund and Rosu [2] and
Lee et al. [3] as bridging the gap between formal verifica-
tion and testing. Runtime verification is combined with
test case generation by Artho et al. [4]. A survey of work
that various groups have undertaken in the area of runtime
verification details some existing runtime verification
tools that employ methods based on various temporal
logics and specification languages. The manner in which
some of these runtime verification tools interface with the
target system is also considered. Some conclusions

IET Sofiw., 2007, 1, (5), pp. 172-179

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 6, 2009 at 06:20 from IEEE Xplore. Restrictions apply.

concerning the feasibility of runtime verification of
embedded systems are drawn, based on the potential for
using existing and emerging monitoring approaches.

Published reviews of monitoring approaches have been
presented in the past by Plattner and Nievergelt [5] and
Delgado et al. [6]. The monitoring of embedded systems
raises special concerns, and this review considers various
monitoring approaches, including: the use of internal
system signals with hardware probes (hardware monitor-
ing), the addition of code to the target system’s software
in order to perform operations related to monitoring at
certain points in the application’s execution (software moni-
toring), the combination of both approaches (hybrid moni-
toring) and the use of on-chip probes (on-chip
monitoring). Selected references highlight the problems
and advantages that have been considered in the past relat-
ing to these approaches. Emphasis is placed on achieving
non-intrusive (or minimally intrusive) monitoring in
embedded systems.

2 Monitoring of embedded systems

Monitoring involves observing the execution behaviour or
performance of a target application in order to gain an
insight into the operation of the software. Improved soft-
ware development techniques have not lead to perfect soft-
ware, and so there remains a need to complement these
techniques with tools that help diagnose the behaviour of
real software implementations. The rationale for monitoring
and the fundamental concepts in monitoring are detailed in
introductions to the field by Nutt [7], Plattner and
Nievergelt [5], Plattner [8], Delgado et al. [6] and Thane
[9]. Examples of runtime checking systems are detailed
by Gates et al. [10] and Mok and Liu [11]. Runtime verifica-
tion has been presented by Havelund and Rosu [2],
Drusinsky [12] and Lee ef al. [3] among others. General
debugging and ‘replay debugging’ schemes have been
described by Tsai et al. [13] and Thane [9] for example,
whereas performance monitoring is described by
Svobodova [14] and Haban and Wybranietz [15]. The fol-
lowing sections will consider monitoring solutions in the
context of observing the execution of software in embedded
systems, with runtime verification as a potential use for the
observations.

In order to observe a target system, elements of a moni-
toring system, termed probes, are attached to the system
(or placed within it) in order to provide information about
the system’s internal operation. As shown in Fig. 1, the
probes provide an intermediate output from the system in
addition to its end output, allowing the system to be seen
as more than a ‘black box’. Such probes can be actual hard-
ware probes that monitor internal system signals.
Alternatively, some code to perform monitoring can be
added to the target software in order to output information
about the internal operation of the program. This is
termed instrumentation, and the added code can be regarded
as ‘software probes’.

There are two main concerns in arranging a probing
mechanism that is suitable for runtime checking of
embedded systems. First, the probes must be capable of
observing enough information about the internal operation
of the system to fulfil the purpose of the monitoring.
Secondly, in adding such probes to the target system, its
behaviour should not be affected. With regard to the first
issue, the observations required are dependant on the
purpose of the monitoring. The authors believe that a versa-
tile runtime checking mechanism can be adapted for a wide
variety of other monitoring purposes. The goal is therefore

IET Sofiw., Vol. 1, No. 5, October 2007

7 »» =

Test inputs Target system
) Target output
Target software
) Probes for
Monitor observation
triggers

J

Probe outputs

II for checking
o

b

Fig. 1 Target system

a As a black box
b With outputs for monitoring

to support runtime checking using a new mechanism for
monitoring software execution in embedded systems;
experimental work will test the feasibility of such a mech-
anism for existing runtime verification approaches.
Existing runtime verification approaches are examined in
the following section, and some conclusions are drawn on
the feasibility of supporting runtime verification of
embedded systems. The nature of embedded systems
hinders simple probing of internal hardware mechanisms.
Paradoxically, the constraints on resource usage hinder
the use of software probes that have insight into the internal
operation of the system; such probes usually have high
overhead that is likely to lead to interference with the
normal operation of the target system. The importance of
non-intrusive monitors and the problems with intrusive soft-
ware monitoring systems are discussed by Harelick and
Stoyen [16], where they present a less intrusive software
monitoring system. Fryer [17] examines non-intrusive and
‘low’ intrusive monitoring in the context of more complex
systems, and in particular embedded systems. Arranging a
non-interfering probing mechanism that is capable of
observing enough information about the internal operation
of the system is a focus of later sections of this paper.

3 Observations necessary for runtime
verification

It has been suggested by Nutt [7] in a tutorial on ‘computer
system monitors’ that the most important questions to be
answered before attempting to monitor a system are ‘what
to measure’ and ‘why the measurement should be taken’.
The latter question essentially asks ‘what is the general
purpose of the monitoring’; is it debugging, testing or ver-
ification and so on? This in turn may dictate the answer to
the first question; what exactly is to be observed? Part of
our research will investigate the feasibility of runtime

173

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 6, 2009 at 06:20 from IEEE Xplore. Restrictions apply.

verification of embedded systems using a non-intrusive
runtime checking mechanism.

With runtime verification, detailed observations of the
target system execution behaviour are checked at runtime
against properties that specify the intended system beha-
viour. These properties are often derived from the target
application’s software requirement specification, or indeed
the properties to be monitored may form the entire specifi-
cation. In either case, the properties are expressed formally,
for example, using linear-time temporal logic (LTL) [18] to
formally state properties or models of target applications for
monitoring and verification. LTL is a branch of modal logic
that considers the notion of time and order. LTL is similar to
propositional logic but includes four temporal operators that
can consider the values of propositions in the future or the
past. These allow conditions such as ‘sometime in the
future this must hold true’ and ‘always in the past this
must hold true’.

A means must also be provided to automatically link low-
level observations of program execution behaviour, which
can be emitted as events from the suitably instrumented
target system, to the relevant monitored properties. The
Monitoring and Checking (MaC) framework described by
Lee et al. [3], and by Kim et al. [19] uses two languages:
MEDL (Meta Event Definition Language) for specifications
and PEDL (Primitive Event Definition Language) to map
program level events to specification level events.

3.1 Expressing monitored properties using LTL

Havelund and Rosu [20] present a runtime verification tool
named Pathexplorer (PAX) that uses LTL. Rules expressing
intended program behaviour based on program actions at
runtime (e.g. values assigned to variables) are monitored
and verified by PAX. A synthesis algorithm is used to gen-
erate a verification algorithm from finite trace past-time
LTL formulae. This verification algorithm checks that a
finite sequence of events satisfies the formulae. The PAX
architecture relies on instrumentation of the target appli-
cation (using a tool named JTrek [21]) with monitoring
code that emits events (changes in execution behaviour),
which are dispatched to individual execution threads (that
can execute on separate hardware) that check particular
rules.

Java PAX, a related runtime verification tool, makes use
of Maude’s rewriting logic (Clavel et al. [22]) and provides
future- and past-time linear temporal logics as detailed by
Havelund and Rosu [23] [2] [24]. Specifications are used
to instrument target applications with code to emit events,
and also to generate observers. These observers are used
in monitoring software execution to allow error-pattern
analysis (checking for programming errors independent of
specifications), as well as checking against the specification
formulae. The Eraser algorithm of Savage ef al. [25] has
been implemented within the Java PaX framework to
provide data race error-pattern analysis.

Havelund and Rosu [24] have concluded that LTL alone
may not be the most appropriate formalism for logic-based
monitoring in Java PAX. LTL has however been extended
for more specific purposes. Metric Temporal Logic (MTL)
as used in Temporal Rover by Drusinsky [12] allows the
application of real-time constraints to the LTL operators,
specifying duration bounds. Temporal Rover monitors
program execution with respect to rules expressed using
LTL and MTL, and runtime verification is performed
using executable alternating automata. An extended LTL/
MTL logic combined with times series constraints
(LTLD) is also described by Drusinsky [26], for use with

174

Temporal Rover and a remote version, DB Rover. LTLD
allows the representation of properties such as stability,
monotonicity, temporal min/max and temporal average
values over time. To specify properties for monitoring,
MaC by Lee ef al. [3] uses a type of temporal logic that
according to Havelund and Rosu [20] can be classed as a
form of interval logic. This has been expanded by
Sammapun ef al. [27] to allow the use of regular expressions
in event definitions, allowing simultaneous events to be
more easily described.

The concept that different specific logic formalisms may
be more appropriate than others, depending on the appli-
cation, has lead to the approach of EAGLE, described by
Barringer et al. in [28]. In addition to allowing the use of
various logics, EAGLE allows new logics to be defined
for use in runtime verification. These logics can be used
in executable rules written as Java code. HAWK, introduced
by d’Amorim and Havelund [29], is a temporal logic that
extends the EAGLE framework. EAGLE requires the user
to create a projection of the actual program state that is
being monitored. In contrast, using HAWK, one only
needs to refer, using specification formulae, to low-level
events emitted by the instrumented target application.

3.2 Methods of observation to facilitate runtime
verification

In order to observe the execution behaviour in enough detail
to facilitate the checking of (possibly complex) properties
expressed in formal logic, most runtime verification tools
rely primarily on the addition of extra monitoring software
to the target application. The Temporal Rover system of
Drusinsky [12] relies on assertions placed as comments in
the target application code. A code to verify/monitor the
target at execution time is generated and compiled as part
of the target application. The PAX architecture of
Havelund and Rosu [20] also relies on instrumentation of
the target application code. In the case of PAX, the
additional code is used to emit events when predicates
across program execution behaviour (e.g. values of vari-
ables) are updated. These events are received by a separate
monitoring process that dispatches relevant events to separ-
ate verification processes.

Some runtime verification solutions make use of separate
software components, some of which can be run on separate
hardware (additional to the target system). Havelund and
Rosu [2] mention that the ‘observer’ component of Java
PAX can be located on a separate computer from that of
the target application; events are transmitted from the
target system over a socket. The MaC framework described
by Lee ef al. [3] adopts a similar ‘event dispatch’ approach,
also relying on instrumentation of the target application in
order to dispatch event information to an observer. This
observer recognises events, and interfaces with a separate
runtime checker component that performs the actual verifi-
cation task.

3.3 Suitable runtime verification approaches for
embedded systems

There are certain runtime verification approaches that are
more suitable for adaptation for use in an embedded
environment, although the feasibility of this will be the
subject of further research by the authors. Certainly a
more modular runtime verification approach is more suit-
able, as the verification engine and elements such as
‘event recognition’ (as in MaC) can be arranged on separate
monitoring systems external to the target system. This

IET Sofiw., Vol. 1, No. 5, October 2007

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 6, 2009 at 06:20 from IEEE Xplore. Restrictions apply.

means that the additional overhead incurred by the target
system because of execution of a monitoring code can be
reduced. Runtime verification can be scaled as noted by
Havelund and Rosu [20]; a particular critical set of proper-
ties could be monitored, rather than a set of properties
forming a complete specification of intended system beha-
viour. Approaches such as those used by PAX and MaC
are suitable for this; selected rules rather than a comprehen-
sive set can be monitored, thus reducing the monitoring
overhead on the target system.

In summary, arranging a probing mechanism that emits
observed execution behaviour as events should facilitate
at least some limited form of runtime verification. The
MacC framework is modular, which may allow experimen-
tation to concentrate on different probing mechanisms to
gather the necessary observations from an embedded
system and relay them to the external runtime verification
apparatus. Also, selected properties to be monitored can
be simply expressed as a versatile mechanism for
mapping language-specific low-level events to the high-
level properties exists. The two main concerns for the
remainder of this paper are achieving the non-intrusive
probing of the target system and overcoming the low visi-
bility of the internal operation of the system to an external
monitoring component.

4 Approaches to monitoring

The classification of monitoring systems according to the
three approaches used for probes, hardware, software and
hybrid, has been used both in early surveys on monitoring
such as that of Nutt [7] and later surveys such as that by
Schroeder [30]. In the presentation of specific monitoring
solutions, the categorisation continues to be used, for
example, by Thane et al. [31]. These three approaches to
monitoring, as well as on-chip monitoring, satisfy to differ-
ent degrees the two requirements important for monitoring
embedded systems; low overhead to avoid interference
and sufficient observation of complex hardware.

4.1 Hardware monitors

Pure hardware monitors have existed for some time, as they
include simple monitors that perhaps simply probe one or
more internal signals of the target system hardware. As
far back as 1975, Nutt [7] makes reference, in his survey
on monitoring, to a monitoring system that monitors the
signal sent to a processor’s activity light on an IBM
System/360 mainframe. More elaborate hardware monitors
have been used in the decades since. A later example is that
of Tsai et al. [13], where although the monitoring system is
essentially a bus monitor (monitoring the internal system
buses of the target), it consists of a substantial amount of
additional hardware, including a separate microprocessor.
A typical hardware monitoring arrangement or ‘bus
monitor’ is shown in Fig. 2. As depicted, dedicated monitor-
ing hardware is attached to the target system (i.e. to observe
information sent over the internal system bus); the observed
data is sent by the monitoring hardware for verification,
external to the target system.

The non-intrusion benefits gained by using additional
hardware for the monitoring function were recognised
from quite early on in the area of performance evaluation
of mainframe computers, with the non-intrusion feature
being highlighted as a key advantage for hardware monitors
by Calingaert [32], Karush [33], and Lucas [34]. Later
work, such as that considered by Tsai et al. [13], also
focused on the potential for minimising intrusion

IET Sofiw., Vol. 1, No. 5, October 2007

Monitor output

Monitoring
Hardware

RO?

(Verification)

System under test

Fig. 2 Simplified view of a typical hardware monitor

caused by the execution of monitoring code by the target
system, by using additional hardware for monitoring.

The difficulties of hardware monitoring have been
emphasised for some time. In 1981 Gallo and Wilder [35]
noted the problem of newer systems offering less physical
probe points, and suggested at the time that hardware moni-
tors were becoming obsolete. Haban and Wybranietz [15]
also note the inapplicability of hardware monitors with
respect to more complex systems. This view of traditional
hardware monitoring approaches is repeated in later work
suggesting alternative monitoring approaches. Calvez and
Pasquier [36] suggest a hybrid monitoring approach and
an on-chip monitoring approach is suggested by Shobaki
and Lindh [37].

With the development of system-on-chip (SoC) devices,
on-chip caching and more complicated processing and
memory architectures have further reduced the visibility
of program execution information system to external parts
of the monitoring system that are separate from the target
system (i.e. connected to the target only by hardware
probes).

4.2 Software monitors

With software monitoring, there are different ways that the
target system can be modified through the addition of soft-
ware for monitoring. Fig. 3 shows how code to perform
observations on the target application execution can be
added to the target application code itself (instrumentation),
or can take the form of a modification to the operating
system of the target system, or the monitor can be a separate
process. The software monitoring approach has long been

Instrumentation : :: j : : : : Instrumentation
of target process |, of operating
source code T system

[LELIAAT
e

Target
Hardware
Target
Process
Target and
monitor
| Monitor output

i
i Process

i

Fig. 3 Abstract view showing possible locations of monitoring
software within a target system

175

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 6, 2009 at 06:20 from IEEE Xplore. Restrictions apply.

used; in 1975 Nutt [7] even suggests that it is an older
approach than that of hardware monitoring. Older surveys
by Calingaert [32] and Karush [33] on the subject of per-
formance evaluation of mainframe computers make refer-
ence to running extra monitoring processes to trace
execution steps, thus building a history of process execution
behaviour for the system (job accounting).

One of the main drawbacks of software monitoring, as
noted by Nutt, Calingaert and Karush, is the potential
side effect from having the target system execute the
additional software. Interference with the target system’s
normal operation may arise if the execution of the target
software is delayed because of the execution of the moni-
toring code. However, it has been suggested by Lucas [34]
even in examining older software monitoring tools, such as
that of Stanley [38], that the effect of software monitoring
can be minimised. Indeed software monitoring has been
used for real-time and distributed systems as noted by
Tokuda ef al. [39], where tolerance of intrusion is particu-
larly low. Tokuda et al. suggest an approach of building
the monitoring apparatus permanently into the target
system (also suggested by Svobodova [40]). The concept
is to design a system with software probes permanently
included, adjusting scheduling for the overhead of moni-
toring and allocating greater resources for the system as
a whole. However, such an approach is not considered
here by the authors, because even if such changes to the
design process are possible, there are significant
drawbacks in that more resources are required by the
target system and overall system performance is impaired.
In the area of embedded systems, where designs need to be
as cost-effective as possible, the option of leaving software
probes in the system is not particularly attractive, unless
there are other cost/benefit considerations such as high-
reliability requirements, where a cost premium can be
justified.

The advantage of monitoring a system from a software
monitor within the target is recognised by Deniston [41],
in that such monitors have access to extensive information
about the operation of a complex system, in contrast to
the limited information available externally to hardware
probes. Indeed, this flexibility is discussed by Rota and de
Almeida [42] in more recent runtime monitoring research,
where they explain their choice of the software monitoring
approach, as compared to hardware or hybrid monitoring.

Applications of monitoring for runtime verification by
Havelund and Rosu [2], Drusinsky [12] and Lee et al. [3]
have mostly used the software monitoring approach.
Indeed, almost all of the tools catalogued by Delgado
et al. [6] use software monitoring.

4.3 Hybrid monitors

In general, hybrid monitoring refers to approaches that use a
combination of additional software and hardware to monitor
a target system, relying on the advantages of each approach
and at the same time attempting to mitigate their disadvan-
tages. By relying on aspects of hardware monitoring, such
as making observations using physical interfaces to the
target system, hybrid monitoring is less likely to interfere
with the behaviour of the target system. Since more
complex systems do not facilitate sufficient observation of
execution behaviour using such physical probes, hybrid
monitoring also relies on an additional monitoring code
that is executed by the target system. Although the overhead
of executing this code can potentially affect the behaviour
and/or performance of the target system, the effects can
be lessened compared to software monitoring because of

176

the use of physical probes (i.e. a less monitoring code is
required to sufficiently observe the system).

Hybrid monitoring was identified as distinct from soft-
ware or hardware monitoring by Svobodova [14], although
earlier monitors (particularly those relying on monitoring
hardware) probably can be categorised as hybrid monitors.
An abstract view of a hybrid monitoring arrangement is
depicted in Fig. 4. In the arrangement shown, the source
code of the target process (i.e. the process being monitored)
is instrumented; an additional code is added to it to emit
events when process features (e.g. variable values) being
monitored are updated. These events are sent to the dedi-
cated monitoring hardware, which analyses the events and
checks them against the provided monitoring rules. The
event analyser provides the dedicated monitor output.

Various hybrid monitoring systems have been developed;
for distributed systems by Haban and Wybranietz [15] and
Hofmann er al. [43], for real-time systems by Harelick
and Stoyen [16] and for embedded systems by Calvez and
Pasquier [36]. Hybrid monitoring has also been used for
performance monitoring as discussed by Shobaki ef al. [44].

4.4 On-chip monitors

The decreasing visibility of system operation to external
observation affects not only traditional hardware monitors,
but also hinders hybrid monitoring. On-chip monitoring,
as described in the monitoring solution proposed by El
Shobaki [44], increases the visibility of the target system
operation for external parts of a monitoring system.
Non-intrusive monitoring is facilitated through the use of
additional on-chip hardware; the overhead of communicat-
ing observations to external checking mechanisms can be
placed upon a small amount of dedicated hardware within
the target system. This can be preferable to impacting on
CPU time in a tightly scheduled real-time environment.
The integration of on-chip tools is the subject of work by
Walters et al. [45].

In addition to built-in, on-chip debugging capabilities
incorporated at design time to support observation of internal
system behaviour, there is a need for hardware interfaces
allowing the observations to be communicated to external
monitors. Some developments in this area are detailed by
MacNamee and Heffernan in [46]; for example, the Nexus
5001 standard specifies a common debug interface for
embedded systems. The widespread use of the IEEE1149.1
interface (JTAG) for various on-chip debuggers is also exam-
ined. MacNamee and Heffernan examine in [47] the possible
uses of built-in on-chip debugging interfaces for
requirements-based monitors.

i
Instrumentation [mnnn @
of target process | !!!!!'!! Events (e.g.
source code | ,;un assignments to
T —bo variables)
i
a minn

Monitoring hardware

(event analyser) Monitor

output

System under test

Fig. 4 Abstract view of a hybrid monitoring arrangement

IET Sofiw., Vol. 1, No. 5, October 2007

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 6, 2009 at 06:20 from IEEE Xplore. Restrictions apply.

On-chip probe

interface
L4 Assertion
Target checker
system IIF FPGA plus
S0OC circuit processor _
PC host /
terminal

Fig.5 Assertion-based runtime debugger

The use of field programmable logic arrays (FPGA)
devices and customisable SoC designs offers new possibili-
ties for hardware facilities supporting monitoring systems to
be included at the design stage. The possibility of having an
on-chip hardware based monitor is examined in such a
context by MacNamee and Heffernan [47]. Drechsler [48]
describes a method of synthesising on-chip hardware to
check specification properties. In the context of monitoring
a target system for verification, an approach has been pro-
posed by El Shobaki and Lindh [37] of including a monitor-
ing IP block on SoC devices to support runtime monitoring.

Verification approaches at a circuit design level (this is a
level below the consideration of execution behaviour) can
also be regarded as relevant to the monitoring of software
execution in embedded systems, as circuit level properties
have even more stringent requirements for monitoring,
such as interface bandwidth, probing, complexity, speed,
and so on. As complex hardware circuits, such as SoC
devices, grow in complexity, the need for automated
design verification solutions is becoming more apparent.

Although assertion-based verification methods have been
used in software engineering for some time, the concept
has more recently been applied to hardware design verifica-
tion. The emergence of assertion languages, such as property
specification language (PSL) [49], has accelerated the interest
in assertion-based verification solutions for hardware-based
systems. PSL is the IEEE Property Specification Language,
which is defined in the IEEE 1850-2005 standard [49]. PSL
provides a formal notation for the specification of electronic
circuit behaviour, compatible with popular design languages,
such as VHDL, Verilog, SystemC and SystemVerilog. Thus,
an integrated specification and verification flow can be
realised for multi-language hardware-based circuit designs.

Currently, there are design tools available to support
assertion-based verification during the verification and
simulation stages of the SoC design process. Such solutions
use off-line analysis of trace debug data, based on assertion-
based methods. However, a runtime verification solution
can be beneficial for real-time verification. One of the first
approaches to such a runtime verification solution at the
SoC level is presented by Peterson and Savaria [50],
where they describe a debug environment for complex hard-
ware systems, for the real-time verification of prototype
systems, which are running at full clock speeds. Peterson
et al. refer to their solution as an ‘assertion-based runtime
debugger’ (ABRD). A minimally invasive hardware
on-chip probe interface collects relevant trace data and
transfers this to an external board that incorporates an
FPGA based assertion checker, which uses a real-time
assertion-based verification approach to validate behaviour.
For a given product design, ABRD files are generated with
the aid of a special compiler that includes the specified
assertions, expressed in an assertion language such as
PSL. The properties, which are expressed in the register
transfer logic level code at the product design time, can

IET Sofiw., Vol. 1, No. 5, October 2007

e
Instrumentation [T @)
of target process [111 Events (e.g.
source code PR assignments to
[—’ﬂ Vanables)
e
a e
Memory,

registers, etc.

FPGA system
under test

Observer

Monitoring core
(event dispatcher)

Fig. 6 Theoretical on-chip (hybrid) monitoring arrangement

be used in the on-line debug process. Fig. 5 shows the
scheme.

The limited bandwidth of the probe interface and the
loading effects at the SoC device interface are reported by
the developers to highlight some limitations to the solution.
However, the concept of extracting trace data in real time
and applying assertion-based verification is a very import-
ant area of development for SoC hardware-level runtime
verification. Emerging higher-density FPGA devices will
more easily accommodate the on-chip interface, along
with the assertion checker on the SoC chip, and thus
reduce some of the reported limitations. These concepts
are discussed by Fryer [51] in an embedded software
environment where bandwidth and probing are less
restricted than the SoC devices considered by Peterson
and Savaria.

A theoretical hybrid monitoring arrangement that uses an
on-chip monitoring core is shown in Fig. 6. In this arrange-
ment, the target process may be instrumented to emit events
(e.g. assignments to variables). This monitoring code does
not need to include complicated communication code, as
a dedicated monitoring core on the chip can instead
perform the task of dispatching events from the chip to
the external observer. External hardware observes the
event information, and can perform whatever tasks are
required (e.g. logging, verification, debugging).

5 Conclusions

Runtime verification offers a useful approach that can be
used to check that software is correct in certain respects.
It can be used to perform checking as an on-line safety
measure, or as a testing tool for finding bugs. It also has
the advantage that the approach has a strong formal basis.
However, considering the difficulties faced in monitoring
program execution, runtime verification tools will need
further development for use in embedded and real-time
systems if the intention is to evaluate the execution of the
target application in its normal execution environment.
Although arranging monitoring to solely use hardware
probes would be advantageous with regard to non-intrusion,
this is not really an option. The level of increasing hardware
complexity today means that when relying on hardware
monitors, there are problems in achieving the desired visi-
bility of the target program execution. On the other hand,
the need for non-intrusive observation of the target may pre-
clude sole reliance on additional software.

177

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 6, 2009 at 06:20 from IEEE Xplore. Restrictions apply.

Nevertheless, some of the work in the area of runtime
verification relies solely on the addition of extra software
to the target application. At the very least, these approaches
require a level of instrumentation that places enough over-
head on the target system that the behaviour of software
in an embedded system could be significantly affected. As
evidenced by the modular nature of some runtime verifica-
tion tools, the potential exists to optimise the use of
additional hardware to perform the necessary processing
of observations for verification. The combination of
assertion-based verification with an on-chip monitor has
been outlined by Peterson and Savaria in the proposal of
[50]. If a minimally invasive scheme for probing an
embedded device can be arranged by using on-chip and
hybrid monitoring, it should be possible to provide the
observations necessary for other runtime verification
approaches.

Potential areas of investigation include incorporating
on-chip hardware probes to observe execution behaviour,
as well as utilising existing chip interfaces to provide the
observations as events to an external monitoring system,
such as a runtime verification engine. Rather than consider-
ing these areas solely in the context of execution monitors,
it should be possible to use these monitoring approaches
with existing runtime verification tools.

6 Acknowledgments

The authors wish to thank the Science Foundation of Ireland
for its generous financial support for this research work
through the Centre for Telecoms. Value-chain Research
(CTVR). The authors also wish to express their gratitude
to the anonymous reviewers whose comments have
greatly improved the content of this paper.

7 References

1 Havelund, K., and Goldberg, A.: “‘Verify your runs’. Proc. Verified
Software: Theories, Tools, Experiments (VSTTE’05), Zurich,
Switzerland, 10—13 October 2005

2 Havelund, K., and Rosu, G.: ‘“Monitoring Java programs with Java
Pathexplorer’, in Havelund, K, and Rosu, G. (Eds.), Proc. lst
Workshop on Runtime Verification (RV’2001) (13th Conf.
Computer Aided Verification, CAV’01), Paris, France, 23 July 2001
Electronic Notes in Theoretical Computer Science (ENTCS),
Elsevier vol 55, (2), pp. 200-217

3 Lee, L, Kannan, S., Kim, M., Sokolsky, O., and Viswanathan, M.:
‘Runtime assurance based on formal specifications’ in Arabnia, H.R.
(Ed.): Proc. Int. Conf. Parallel and Distributed Processing
Techniques and Applications (PDPTA 1997), Las Vegas, Nevada,
USA, 30 June—3 July 1997, CSREA Press

4 Artho, C., Barringer, H., Goldberg, A., Havelund, K., Khurshid, S.,
Lowry, M., Pasareanu, C., Rosu, G., Sen, K., Visser, W., and
Washington, R.: ‘Combining test case generation and runtime
verification’, Theor. Comput. Sci., 2005, 336, (2—3), pp. 209-234

5 Plattner, B., and Nievergelt, J.: ‘Monitoring program execution:
a survey’, [EEE Comput., 1981, 14, (1), pp. 76—93

6 Delgado, N., Gates, A.Q., and Roach, S.: ‘A taxonomy and catalog of
runtime software-fault monitoring tools’, IEEE Trans. Softw. Eng.,
2004, 30, (12), pp. 859-872

7 Nutt, GJ.: ‘Tutorial: computer system monitors’, /[EEE Comput.,
1975, 8, (11), pp. 51-61

8 Plattner, B.: ‘Real-time execution monitoring’, [EEE Trans. Sofiw.
Eng., 1984, 10, (6), pp. 756—764

9 Thane, H.: ‘Monitoring, testing and debugging distributed real-time
systems’, PhD thesis, Kungliga Tekniska Hogskolan, Stockholm,
Sweden, 2000

10 Gates, A.Q., Roach, S., Mondragon, O., and Delgado, N.: ‘DynaMICs:
comprehensive support for run-time monitoring” in Havelund, K., and
Rosu, G. (Eds.): Proc. 1st Workshop on Runtime Verification
(RV’2001) (13th Conf. Computer Aided Verification, CAV’01),
Paris, France, 23 July 2001, Electronic Notes in Theoretical
Computer Science (ENTCS), Elsevier, vol. 55, pp. 164—180

11 Mok, AXK., and Liu, G.: ‘Efficient run-time monitoring of timing
constraints’. Proc. 3rd IEEE Real-Time Technology and

178

12

13

14

15

16

17

18

19

20

21

23

24

25

26

27

28

29

30

31

Applications Symp. (RTAS’97), Montréal, Canada, 9-11 June
1997, IEEE Computer Society Press, pp. 252—262

Drusinsky, D.: ‘The temporal rover and the ATG rover’ in Havelund, K.,
Penix, J., and Visser, W. (Eds.): Proc. 7th Int. SPIN Workshop on
SPIN Model Checking and Software Verification, Stanford,
California, USA, 30 August—1 September 2000, Lecture Notes in
Computer Science (LNCS), Springer-Verlag, vol. 1885,
pp- 323-330

Tsai, J.J.P., Fang, K.-Y., Chen, H.-Y., and Bi, Y.-D.. ‘A
noninterference monitoring and replay mechanism for real-time
software testing and debugging’, IEEE Trans. Softw. Eng., 1990, 16,
(8), pp. 897-916

Svobodova, L.: ‘Online system performance measurements with
software and hybrid monitors’, ACM SIGOPS Oper. Syst. Rev.,
1973, 7, (4), pp. 45-53

Haban, D., and Wybranietz, D.: ‘A hybrid monitor for behavior and
performance analysis of distributed systems’, /[EEE Trans. Softw.
Eng., 1990, 16, (2), pp. 197-211

Harelick, M., and Stoyen, A.: ‘Concepts from deadline non-intrusive
monitoring” in Frigeri, A.H., Halang, W.A., and Son, S.H. (Eds.):
Proc. 24th IFAC/IFIP Workshop on Real-Time Programming
(WRTP ’99), Wadern, Germany, 30 May—3 June 1999, Elsevier
Fryer, R.: ‘Low and non-intrusive software instrumentation: a survey
of requirements and methods’. Proc. 17th AIAA/IEEE/SAE Digital
Avionics Systems Conf. (DASC), Bellevue, Washington, USA, 31
October—7 November 1998, IEEE Press, vol. 1, pp. C22/1-C22/8
Pneuli, A.: ‘The temporal logic of programs’. Proc. 18th IEEE Symp.
Foundations of Computer Science (FOCS 1977), 1977, pp. 46—77
Kim, M., Viswanathan, M., Ben-Abdallah, H., Kannan, S., Lee, 1., and
Sokolsky, O.: ‘Formally specified monitoring of temporal properties’.
Proc. 11th Euromicro Conf. Real-Time Systems (Euromicro RTS’99),
York, England, UK, 9-11 June 1999, IEEE Computer Society
Press, pp. 114-122

Havelund, K., and Rosu, G.: ‘Synthesizing monitors for safety
properties’ in Katoen, J.-P., and Stevens, P. (Eds.): Proc. 8th Int.
Conf. Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2002) (part of Joint European Conf. Theory and
Practice of Software, ETAPS 2002), Grenoble, France, 8—12 April
2002, Lecture Notes in Computer Science (LNCS), Springer-Verlag,
vol. 2280, pp. 342—-356

JTrek, Digital Equipment Corporation (Compag, HP), 1997

Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J.,
and Quesada, J.F.: ‘The maude system’ in Narendran, P., and
Rusinowitch, M. (Eds.): Proc. 10th Int. Conf. Rewriting Techniques
and Applications (RTA-99), Trento, Italy, July 1999, Lecture Notes in
Computer Science (LNCS), Springer-Verlag, vol. 1631, pp. 240-243
Havelund, K., and Rosu, G.: ‘An overview of the runtime verification
tool Java Pathexplorer’, Form. Methods Syst. Des., 2004, 24, (2),
pp. 189-215

Havelund, K., and Rosu, G.: ‘Java Pathexplorer — a runtime
verification tool’. 6th Int. Symp. on Artificial Intelligence, Robots
and Automation in Space (i-SAIRAS’01), Montréal, Canada, 18—21
June 2001

Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and Anderson, T.:
‘Eraser: a dynamic data race detector for multithreaded programs’,
ACM Trans. Comput. Syst. (TOCS), 1997, 15, (4), pp. 391411
Drusinsky, D.: ‘Monitoring temporal rules combined with time series’
in Hunt, W.A. Jr. (Ed.): Proc. 15th Int. Conf. Computer-Aided
Verification (CAV ’03), Boulder, Colorado, USA, 8—12 July 2003,
Lecture Notes in Computer Science (LNCS), Springer-Verlag,
vol. 2725, pp. 114-117

Sammapun, U., Easwaran, A., Lee, 1., and Sokolsky, O.: ‘Simulation
of simultaneous events in regular expressions for run-time
verification’ in Havelund, K., and Rosu, G. (Eds.): Proc. 4th
Workshop on Runtime Verification (RV 2004) (in conj. w. 7th
European Joint Conf. Theory and Practice of Software, ETAPS’04),
Barcelona, Spain, 3 April 2004, Electronic Notes in Theoretical
Computer Science (ENTCS), Elsevier, vol. 113, pp. 123-143
Barringer, H., Goldberg, A., Havelund, K., and Sen, K.: ‘Rule-based
runtime verification’ in Steffen, B., and Levi, G. (Eds.): Proc. 5th
Int. Conf. Verification, Model Checking and Abstract Interpretation
(VMCAI’04), Venice, Italy, 11-13 January 2004, Lecture Notes in
Computer Science (LNCS), Springer-Verlag, vol. 2937, pp. 44—57
D’Amorim, M., and Havelund, K.: ‘Event-based runtime verification
of java programs’. Proc. 3rd Int. Workshop on Dynamic
Analysis (WODA 2005), St. Louis, Missouri, USA, 17 May 2005
ACM SIGSOFT Software Engineering Notes, ACM Press, vol. 30,
pp. 1-7

Schroeder, B.A.: ‘On-line monitoring: a tutorial’, I[EEE Comput.,
1995, 28, (6), pp. 72—78

Thane, H., Sundmark, D., Huselius, J., and Petterson, A.: ‘Replay
debugging of real-time systems using time machines’. Proc. 17th
Int. Parallel and Distributed Processing Symp. (IPDPS ’03), Nice,

IET Sofiw., Vol. 1, No. 5, October 2007

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 6, 2009 at 06:20 from IEEE Xplore. Restrictions apply.

32

33

34

35

36

37

38

39

40

41

42

France, 22-26 April 2003, IEEE Computer Society
Press, pp. 288-295
Calingaert, P.: ‘System performance evaluation: survey and

appraisal’, Commun. ACM, 1967, 10, (1), pp. 12—-18

Karush, A.D.: ‘Two approaches for measuring the performance of
time-sharing systems’ in Denning, P.J., and Coffman, E.G., Jr.
(Eds.): Proc. 2nd ACM Symp. Operating Systems Principles
(SOSP’69), Princeton, New Jersey, USA, 20-22 October
1969, ACM Press, pp. 159-166

Lucas, H., Jr.. ‘Performance evaluation and monitoring’, ACM
Comput. Surv. (CSUR), 1971, 3, (3), pp. 79-91

Gallo, A., and Wilder, R.P.: ‘Performance measurement of data
communications systems with emphasis on open system
interconnections (OSI)’. Proc. 8th Annual Symp. Computer
Architecture (ICSA’81), Minneapolis, Minnesota, USA, 12—14 May
1981, IEEE Computer Society Press, pp. 149—161

Calvez, J.P., and Pasquier, O.: ‘Performance monitoring and
assessment of embedded HW/SW systems’, Des. Autom. Embedded
Syst., 1998, 3, (1), pp. 5-22

El Shobaki, M., and Lindh, L.: ‘A hardware and software monitor for
high-level system-on-chip verification’. Proc. IEEE 2001 2nd Int.
Symp. Quality Electronic Design (ISQED 2001), San Jose,
California, USA, 26-28 March 2001, IEEE Computer Society
Press, pp. 56—61

Stanley, W.I.: ‘Measurement of system operational statistics’, /IBM
Syst. J., 1969, 8, (4), pp. 299-308

Tokuda, H., Kotera, M., and Mercer, C.W.: ‘A real-time monitor for a
distributed real-time operating system’, ACM SIGPLAN Not., 1988,
24, (1), pp. 68-77

Svobodova, L.: ‘Performance monitoring in computer systems:
a structured approach’, ACM SIGOPS Oper. Syst. Rev., 1981, 15,
(3), pp. 39-50

Deniston, W.R.: ‘SIPE: A TSS/360 software measurement technique’.
Proc. 24th Nat. Conf. ACM, 26—28 August 1969, ACM Press

Rota, S.R., and de Almeida, J.R., Jr.: ‘Run-time monitoring for
dependable systems: an approach and a case study’ in Fraga, J.D.S.

IET Sofiw., Vol. 1, No. 5, October 2007

43

44

45

46

47

48

49

50

51

(Ed.): Proc. 23rd IEEE Int. Symp. Reliable Distributed Systems
(SRDS 2004), Florianopolis, Brazil, 18—20 October 2004, IEEE
Computer Society Press, pp. 41-49

Hofmann, R., Klar, R.,, Mohr, B., Quick, A., and Siegle, M.
‘Distributed performance monitoring: methods, tools, and
applications’, [EEE Trans. Parallel Distrib. Syst., 1994, 5, (6),
pp. 585-598

El Shobaki, M.: ‘On-chip monitoring of single- and multiprocessor
hardware real-time operating systems’. Proc. 8th Int. Conf.
Real-Time Computing Systems and Applications (RTCSA 2002),
Tokyo, Japan, 18—20 March 2002

Walters, G., King, E., Kessinger, R., and Fryer, R.: ‘Processor Design
and Implementation for Real-Time Testing of Embedded Systems’.
Proc. 17th AIAA/IEEE/SAE Digital Avionics Systems Conf.
(DASC), Bellevue, Washington, USA, 31 October—7 November
1998, IEEE Press, vol. 1, B44/1-B44/8

MacNamee, C., and Heffernan, D.: ‘Emerging on-chip debugging
techniques for real-time embedded systems’, Comput. Control Eng. J.,
2000, 11, (6), pp. 295-303

MacNamee, C., and Heffernan, D.: ‘Implementation approaches for
requirements-based monitors for embedded systems’. Proc. IEEE IC
Test Workshop (ICTW 2004), Limerick, Ireland, 13—14 September
2004, E&CE Dept, University of Limerick.

Drechsler, R.: ‘Synthesizing checkers for on-line verification of
system-on-chip designs’. Proc. 2003 IEEE Int. Symp. Circuits and
Systems (ISCAS’03), Bangkok, Thailand, 25-28 May 2003, IEEE,
vol. IV, pp. 748-751

IEEE 1850-2005: ‘IEEE Standard for property specification language
(PSL)’, IEEE Standards Association, 2005

Peterson, K., and Savaria, Y.: ‘Assertion-based on-line verification
and debug environment for complex hardware systems’. Proc. 2004
IEEE Int. Symp. Circuits and Systems, Vancouver, British
Columbia, Canada, 23-26 May 2004, IEEE, vol. II, pp. 685—688
Fryer, R.E.: ‘FPGA based CPU instrumentation for hard real-time
embedded system testing’, ACM SIGBED Rev, 2005, 2, (2),
pp. 39-42

179

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 6, 2009 at 06:20 from IEEE Xplore. Restrictions apply.

