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A New Look at the Statistical Model Identification

HIROTUGU AKAIKE, MEMBER, IEEE

Abstract—The history of the development of statistical hypothesis
testing in time series analysis is reviewed briefly and it is pointed
out that the hypothesis testing procedure is not adequately defined
as the procedure for statistical model identification. The classical
maximum likelihood estimation procedure is reviewed and a new
estimate minimum information theoretical criterion (AIC) estimate
(MAICE) which is designed for the purpose of statistical identifica-
tion is introduced. When there are several competing models the
MAICE is defined by the model and the maximum likelihood esti-
mates of the parameters which give the minimum of AIC defined by

AIC = (—2)log (maxzimum likelihood) + 2(number of

independently adjusted parameters within the model).

MAICE provides a versatile procedure for statistical model identi-
fication which is free from the ambiguities inherent in the application
of conventional hypothesis testing procedure. The practical utility of
MAICE in time series analysis is demonstrated with some numerical
examples.

I. INTRODUCTION

IN spite of the recent development of the use of statis-
tical concepts and models in almost every field of engi-
neering and science it seems as if the difficulty of con-
structing an adequate model based on the information
provided by a finite number of observations is not fully
recognized. Undoubtedly the subject of statistical model
construction or identification is heavily dependent on the
results of theoretical analyses of the object under observa-
tion. Yet it must be realized that there is usually a big gap
between the theoretical results and the practical proce-
dures of identification. A typieal example is the gap between
the results of the theory of minimal realizations of a linear
system and the identification of a Markovian representa-
tion of a stochastic process based on a record of finite
duration. A minimal realization of a linear system is
usually defined through the analysis of the rank or the
dependence relation of the rows or columns of some
Hankel matrix {1]. In a practical situation, even if the
Hankel matrix is theoretically given, the rounding errors
will always make the matrix of full rank. If the matrix is
obtained from a record of observations of a real object the
sampling variabilities of the elements of the matrix will be
by far the greater than the rounding errors and also the
system will always be infinite dimensional. Thus it can be
seen that the subject of statistical identification is essen-
tially concerned with the art of approximation which is a
basic element of human intellectual activity.

As was noticed by Lehman [2, p. viii], hypothesis
testing procedures are traditionally applied to the situ-
ations where actually multiple decision procedures are
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required. If the statistical identification procedure is con-
sidered as a decision procedure the very basic problem is
the appropriate choice of the loss funetion. In the Ney-
man-Pearson theory of statistical hypothesis testing only
the probabilities of rejecting and accepting the correct
and incorrect hypotheses, respectively, are considered to
define the loss caused by the decision. In practical situ-
ations the assumed null hypotheses are only approxima-
tions and they are almost always different from the
reality. Thus the choice of the loss function in the test
theorv makes its practical application logically contra-
dictory. The recognition of this point that the hypothesis
testing procedure is not adeguately formulated as a pro-
cedure of approximation is very important for the de-
velopment of practically useful identification procedures.

A new perspective of the problem of identification is
obtained by the analysis of the very practical and success-
ful method of maximum likelihood. The fact that the
maximum likelihood estimates are, under certain regu-
larity conditions, asymptotically efficient shows that the
likelihood function tends to be a quantity which is most
sensitive to the small variations of the parameters around
the true values. This observation suggests the use of

S(g;f(-1)) = J g(x) log f(zl0) dx

as a criterion of “fit” of a model with the probabilistic
structure defined by the probability density function
f(x[ﬂ) to the structure defined by the density function g{z).
Contrary to the assumption of a single family of density
f(x!8) in the classical maximum likelihood estimation
procedure, several alternative models or families defined
by the densities with different forms and/or with one and
the same form but with different restrictions on the
parameter vector @ are contemplated in the usual situation
of identification. A detailed analysis of the maximum
likelihood estimate (AMLE) leads naturally to a definition
of a new estimate which is useful for this type of multiple
model situation. The new estimate is called the minimum
information theoretic eriterion (AIC) estimate (AIAICE),
where AIC stands for an information theoretic criterion
recently introduced by the present author [3] and is an
estimate of a measure of fit of the model. MAICE is de-
fined by the model and its parameter values which give the
minimum of AIC. By the introduction of MAICE the
problem of statistical identification is explicitly formulated
as a problem of estimation and the need of the subjective
judgement required in the hypothesis testing proeedure
for the decision on the levels of significance is completely
eliminated. To give an explicit definition of NIAICE and to
discuss its characteristics by comparison with the con-
ventional identification procedure based on estimation
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and hypothesis testing form the main objectives of the
present paper.

Altliough MAICE provides a versatile method of
identification which ean be used in every field of statistical
model building, its practical utility in time series analysis
is quite significant. Some numerical examples are given to
show how MAICE can give objectively defined answers
to the problems of time series analysis in contrast with the
conventional approach by hypothesis testing which can
only give subjective and often inconclusive answers.

11. HyprorHEsIs TesTiNGg IN TiME SERIES ANALYSIS

The study of the testing procedure of time series started
with the investigation of the test of a simple hypothesis
that a single serial correlation coefficient is equal to 0.
The utility of this type of test is certainly too limited to
make it a gencrally useful procedure for model identifica-
tion. In 1947 Quenouille [4] introduced a test for the
goodness of fit of autoregressive (AR) models. The idea of
the Quenouille’s test was extended by Wold [5] to a test of
goodness of fit of moving average (MA) models. Several
refinements and generalizations of these test procedures
followed [6]-[9] but a most significant contribution to the
subject of hypothesis testing in time series analysis was
made by Whittle [10], [11] by a systematic application of
the Nevman—Pearson likelihood ratio test procedure to
the time series situation.

A very basic test of time series is the test of whiteness.
In many situations of model identification the whiteness
of the residual series after fitting a model is required as a
proof of adequacy of the model and the test of whiteness
is widely used in practical applications [12]-[15]. For the
test of whiteness the analysis of the periodgram provides a
general solution.

A good exposition of the classical hypothesis testing
procedures including the tests based on the periodgrams is
given in Hannan [16].

The fitting of AR or MA models is essentially a subject
of multiple decision procedure rather than that of hy-
pothesis testing. Anderson [17] discussed the determination
of the order of a Gaussian AR process explicitly as a
multiple decision procedure. The procedure takes a form
of a sequence of tests of the models starting at the highest
order and successively down to the lowest order. To
apply the procedure to a real problem one has to specify the
level of significance of the test for each order of the model.
Although the procedure is designed to satisfy certain
clearly defined condition of optimality, the essential
difficulty of the problem of order determination remains
as the difficulty in choosing the levels of significance.
Also the loss function of the decision procedure is defined
by the probability of making incorrect decisions and thus
the procedure is not free from the logical contradiction
that in practical applications the order of the true struc-
ture will always be infinite. This difficulty can only be
avoided by reformulating the problem explicitly as a
problem of approximation of the true structure by the
model.
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I11. Direct ArProACH TO MODEL ErrROR CONTROL

In the field of nontime series regression analysis Mal-
lows introduced a statistic C, for the selection of variables
for regression [18]. C, is defined by

C, = (6% (residual sum of squares) — N + 2p,

where ¢2 is a properly chosen estimate of 2, the unknown
variance of the true residual, N is the number of observa-
tions, and p is the number of variables in regression. The
expeeted value of C, is roughly p if the fitted model is
exact and greater otherwise. €, is an estimate of the
expected. sum of squares of the prediction, scaled by o2,
when the estimated regression coefficients are used for
prediction and has a clearly defined meaning as a measure
of adequacy of the adopted model. Defined with this
clearly defined criterion of fit, C, attracted serious atten-
tion of the people who were concerned with the regression
analyses of practical data. See the references of [18]. Un-
fortunately some subjective judgement is required for the
choice of ¢2 in the definition of C,.

At almost the same time when C, was introduced,
Davisson [19] analyzed the mean-square prediction error
of stationary Gaussian process when the estimated co-
efficients of the predictor were used for prediction and
discussed the mean-square error of an adaptive smoothing
filter [20]. The observed time series z, is the sum of signal
s; and additive white noise »n;. The filtered output §; is
given by

L
§i = Z B.‘i Tty (7' = 112r' o ,JV}
j= A

where B3, is determined from the sample 2, (7 = 1,2, - -\ N).
The probiem is how to define L and M so that the mean-
square smoothing error over the N samples E[(1/N)
> ¥, (s; — 3,)?]is minimized. Under appropriate assump-
tions of s; and n; Davisson [20] arrived at an estimate of
this error which is defined by

#x?[M,L] = s + 26(M + L + 1)/N,

where s? is an estimate of the error variance and ¢ is the
slope of the curve of s? as a function of (M + L)/N at
“larger” values of (L 4+ M)/N. This result is in close
correspondence with Mallows’ C,, and suggests the im-
portance of this type of statisties in the field of model
identification for prediction. Like the choice of ¢* in
Mallows’ €, the choice of ¢ in the present statistic ¢x* [,
L] becomes a difficult problem in practical application.
In 1969, without knowing the close relationship with
the above two procedures, the present author introduced
a fitting procedure of the univariate AR model defined by
Yi = @aYs1 + -0+ apys_p + 2, where z,; is a white noise
[21]. In this procedure the mean-square error of the one-
step-ahead prediction obtained by using the least squares
estimates of the coeflicients is controlled. The mean-
square error is called the final prediction error (FPE) and
when the data y; (¢ = 1,2,---,N) are given its estimate is
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defined by
FPE(p) = {(V + p)/(N — p)}

' (Cyﬂ - éplél'— I dppép)y
N -1

where the mean of y, is assumed to be 0, ¢, = (1/N)>.¥ 5
Yy and d,/s are obtained by solving the Yule—Walker
equation defined by €'/’s. By scanning p successively from
0 to some upper limit L the identified model is given by
the p and the corresponding d,,’s which give the minimum
of FPE(p) (p = 0,1,---,L). In this procedure no sub-
jective element is left in the definition of FPE(p). Only
the determination of the upper limit Z requires judgement.
The characteristies of the procedure was further analvzed
221 and the procedure worked remarkably well with
practical data [23], [24]. Gersch and Sharp [25] discussed
their experience of the use of the procedure. Bhansali [26]
reports very disappointing results, claiming that thev
were obtained by Akaike’s method. Aectually the dis-
appointing results are due to his incorrect definition of
the related statistic and have nothing to do with the
present minimum FPE procedure. The procedure was
extended to the case of multivariate AR model fitting
[27]. A successful result of implementation of a computer
control of cement kiln processes based on the results
obtained by this identification procedure was reported by
Otomo and others [28].

One common characteristic of the three procedures
discussed in this section is that the analysis of the sta-
tistics has to be extended to the order of 1/N of the main
term.

IV. AMEaN LoG-LiKELIHOOD AS A NMEASTURE oF FiT

The well known fact that the MLE is, under regularity
conditions, asymptotically efficient [29] shows that the
likelihood function tends to be a most sensitive criterion of
the deviation of the model parameters from the true values.
Consider the situation where x1,as,---,xx are obtained
as the results of N independent observations of a random
variable with probability density function g(zr). If a
parametric family of density function is given by f(z!6)
with a vector parameter 6, the average log-likelihood, or
the log-likelihood divided by N, is given by

hY
(1/N) El log f(x/0), M

where, as in the sequel of the present paper, log denotes the
natural logarithms. As N is increased indefinitely, this
average tends, with probability 1, to

S(g:f(-10) = fg(x) log f(x6) dx,

where the existence of the integral is assumed. From the
efficiency of MLE it can be seen that the (average) mean
log-likelihood S(g;f(-'6)) must be a most sensitive criterion
to the small deviation of f(.r'ie) from g(x). The difference

I(g;f(-19)) = S(g:9) — S(g;/(-16))

is known as the Kullback—Leibler mean information for
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discrimination between g(z) and f(xle) and takes positive
value, unless f(x'iﬁ) = g(x) holds almost everywhere [30].
These observations show that S(g;f(- |9)) will be a reason-
able criterion for defining a best fitting model by its
maximization or, from the analogy to the concept of
entropy, by minimizing —S(g;f(-‘ﬁ)). It should be men-
tioned here that in 1950 this last quantity was adopted asa
definition of information function by Bartlett [31]. One
of the most important characteristics of S(g:f(-16)) is that
its natural estimate, the average log-likelihood (1), can be
obtained without the knowledge of ¢(r). When only one
family f(a‘l@) is given, maximizing the estimate (1) of
S(g:/(-'8)) with respect to 8 leads to the MLE .

In the case of statistical identification, usually several
families of f(x 8), with different forms of f (_.r[(?) and/or with
one and the same form of f (.rIG) but with different restric-
tions on the parameter veetor 8, are given and it is re-
quired to decide on the best choice of f(.l'iﬁ). The classical
maximum likelihood principle can not provide useful
solution to this type of problems. A solution can be
obtained by incorporating the basic idea underlyving the
statistics discussed in the preceding section with the
maximum likelihood prineiple.

Consider the situation where g(z) = f(x'6,). For this
case I(g:f(-:6)) and S{g:f(- 16)) will simply be denoted by
1(6,:6) and S(6y;8), respectively. When 6 is sufficiently
close to 8, I(6,;6) admits an approximation [30]

(000 + A6) = (3)] a8l;,2

where |Ag)l;2 = A§"J A6 and J is the Fisher information
matrix which is positive definite and defined by

3 Xl (X|6
7y = E{ log f(X16) 3 log f(X| )}‘
o9, 0, |

where J,; denotes the (7,j)th element of J and 8; the ith
component of 4. Thus when the MLE & of 6, lies very
close to 6, the deviation of the distribution defined by
f(.l'l@) from the true distribution f(xl6) in terms of the
variation of S(g;f(- 16)) will be measured by Ml — BOHJ?.
Consider the situation where the variation of ¢ for maxi-
mizing the likelihood is restricted to a lower dimensional
subsgpace © of 8 which does not include 8. For the MLE 6
of 6 restricted in O, if ® which is in @ and gives the
maximum of S(6y;6) is sufficiently close to 6, it can be
shown that the distribution of N1i§ — 6/,,2 for sufficiently
large N is approximated under certain regularity conditions
by a chi-square distribution the degree of freedom equal
to the dimension of the restricted parameter space. See,
for example, [32]. Thus it holds that

b — 6 2+ K, @)

EONI(8:0) = N

where £, denotes the mean of the approximate distribu-~
tion and & is the dimension of 6 or the number of param-
eters independently adjusted for the maximization of the
likelihood. Relation (2) is a generalization of the expected
prediction error underlyving the statistics discussed in the
preceding section. When there are several models it will
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be natural to adopt the one which will give the minimum
of EI(6;0). For this purpose, considering the situation
where these models have their 6’s very close to 8, it be-
comes necessary to develop some estimate of N Hﬂ —
80||,2 of (2). The relation (2) is based on the fact that the
asymptotic distribution of v/N(§ — ) is approximated
by a Gaussian distribution with mean zero and variance
matrix J ~1. From this fact if

N N X
2 (; log f(z60) — -; log f(11|0)) 3)

is used as an estimate of N||o — 6|,? it nceds a correction
for the downward bias introduced by replacing 6 by 6.
This correction is simply realized by adding &k to (3).
For the purpose of identification only the comparison of
the values of the estimates of EI(6,;8) for various models
is necessary and thus the common term in (3) which
includes §, can be discarded.

V. DEFINITION OF AN INFORMATION CRITERION

Based on the observations of the preceding section an
information criterion AIC of ¢ is defined by

AIC(H) = (—2) log (maximum likelihood) + 2k,

where, as is defined before, k is the number of indepen-
dently adjusted parameters to get 4. (1/N)AIC(8) may be
considered as an estimate of —2ES(6;0). 1C stands for
information criterion and A is added so that similar sta-
tistics, BIC, DIC ete., may follow. When there are several
specifications of fl (1‘.:0) corresponding to several models, the
MAICE is defined by the f(x\é) which gives the minimum
of AIC(#). When there is only one unrestricted family of
f(z|6), the MAICE is defined by f(z|6) with 6 identical to
the classical MLE. It should be noticed that an arbitrary
additive constant can be introduced into the definition of
AIC(#) when the comparison of the results for different
sets of observations is not intended. The present definition
‘of MAICE gives a mathematical formulation of the prin-
ciple of parsimony in model building. When the maximum
likelihood is identical for two models the MAICE is the
one defined with the smaller number of parameters.

In time series analysis, even under the Gaussian assump-
tion, the exact definition of likelihood is usually too com-
plicated for practical use and some approximation is
necessary. For the application of MAICE there is a
subtle problem in defining the approximation to the likeli-
hood funection. This is due to the fact that for the definition
of AIC the log-likelihoods must be defined consistently to
the order of magnitude of 1. For the fitting of a stationary
Gaussian process model a measure of the deviation of a
model from a true structure can be defined as the limit of
the average mean log-likelihood when the number of
observations N is increased indefinitely. This quantity is
identical to the mean log-likelihood of innovation defined
by the fitted model. Thus a natural procedure for the
fitting of a stationary zero-mean Gaussian process model
to the sequence of observations yi,ys," - *,¥x 1s to define a
primitive stationary Gaussian model with the l-lag co-

719

variance matrices E(), which are defined by
N1

(I/N) gl yn+1ynl:
= O,

E(D)

1=012---N—1

I=NN+1,--

and fit a model by maximizing the mean log-likelihood of
innovation or equivalently, if the elements of the co-
variance matrix of innovation are within the parameter
set, by minimizing the log-determinant of the variance
matrix of innovation, N times of which is to be used in
place of the log-likelihood in the definition of AIC. The
adoption of the divisor N in the definition of R(l) is im-
portant to keep the sequence of the covariance matrices
positive definite. The present procedure of fitting a
Gaussian model through the primitive model is discussed
in detail in [33]. It leads naturally to the concept of
Gaussian estimate developed by Whittle [34]. When the
asymptotic distribution of the normalized correlation
coefficients of y, is identical to that of a Gaussian process
the asymptotic distribution of the statistics defined as
functions of these coefficients will also be independent of
the assumption of Gaussian process. This point and the
asymptotic behavior of the related statistics which is re-
quired for the justification of the present definition of AIC
is discussed in detail in the above paper by Whittle.
For the fitting of a univariate Gaussian AR model the
MAICE defined with the present definition of AIC is
asymptotically identical to the estimate obtained by the
minimum FPE procedure.

AIC and a primitive definition of MAICE were first
introduced by the present author in 1971 [3]. Some early
successful results of applications are reported in [3], [35],
[36].

VI. Nuvgerical EXAMPLES

Before going into the discussion of the characteristics
of MAICE its practical utility is demonstrated in this
section,

For the convenience of the readers who might wish to
check the results by themselves Gaussian AR models were
fitted to the data given in Anderson’s book on time series
analysis [37]. To the Wold’s three series artificially gen-
erated by the second-order AR schemes models up to the
50th order were fitted. In two cases the MAICE’s were
the second-order models. In the case where the MAICE
was the first-order model, the second-order coefficient of
the generating equation had a very small absolute value
compared with its sampling variability and the one-step-
ahead prediction error variance was smaller for the
MAICE than for the second-order model defined with the
MLE’s of the coefficients. To the classical serics of Wolfer’s
sunspot numbers with N = 176 AR models up to the
35th order were fitted and the MAICE was the eighth-
order model. AIC attained a local minimum at the second
order. In the case of the series of Beveridge’s wheat price -
index with N = 370 the MAICE among the AR model up
to the 50th order was again of the eighth order. AIC
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attained a local minimum at the second order which was
adopted by Sargan [38]. In the light of the discussions of
these series by Anderson, the choice of eight-order models
for these two series looks reasonable.

Two examples of application of the minimum FPE pro-
cedure, which produces estimates asymptotically equiva-
lent to AAICE’s, are reported in [3]. In the example
taken from the book by Jenking and Watts [39, section
5.4.3] the estimate was identical to the one chosen by the
authors of the book after a careful analysis. In the case of
the seiche record treated by Whittle [40] the minimum
FPE procedure clearly suggested the need of a very high-
order AR model. The difficulty of fitting AR models to
this set of data was discussed by Whittle [41, p. 38].

The procedure was also applied to the series £ and F
given in the book by Box and Jenkins [12]. Second- or
third-order AR model was suggested by the authors for the
series E which is a part of the Wolfer’s sunspot number
series with N = 100. The MAICE among the AR models
up to the 20th order was the second-order model. Among
the AR models up to the 10th order fitted to the series F
with N = 70 the MAICE was the second-order model,
which agrees with the suggestion made by the authors of
the book.

To test the ability of discriminating between AR and
MA models ten series of y, (n = 1,---,1600) were gener-
ated by the relation y, = z, + 0.6x,, — 0.1z, where
z, was generated from a physical noise source and was
supposed to be a Gaussian white noise. AR models were
fitted to the first N points of each series for N = 50, 100,
200, 400, 800, 1600. The sample averages of the MAICE
AR order were 3.1, 4.1, 6.5, 6.8, 8.2, and 9.3 for the suc-
cessively increasing values of N. An approximate MAICE
procedure which is designed to get an initial estimate of
AAICE for the fitting of Markovian models, deseribed n
[33], was applied to the data. With only a few exceptions
the approximate MIAICE’s were of the second order. This
corresponds to the AR-MA model with a second-order
AR and a first-order MA. The second- and third-order MA
models were then fitted to the data with N = 1600.
Among the AR and MA models fitted to the data the
second-order MA model was chosen nine times as the
MAICE and the third-order MA was chosen once. The
average difference of the minimum of AIC between AR
and MA models was 7.7, which roughly means that the
expected likelihood ratio of a pair of two fitted models
will be about 47 for a set of data with & = 1600 in favor of
ATA model.

Another test was made with the example discussed by
Gersch and Sharp [25]. Eight series of length N = 800
were generated by an AR-AA scheme described in the
paper. The average of the MAICE AR orders was 17.9
which is in good agreement with the value reported by
Gersch and Sharp. The approximate MAICE procedure
was applied to determine the order or the dimension of the
Markovian representation of the process. For the eight
cases the procedure identically picked the correct order
four. AR-MA models of various orders were fitted to one
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set of data and the corresponding values of AIC(p,q) were
computed, where AIC(p,q) is the value of AIC for the
model with AR order p and MA order g and was defined by

AIC(p,q) = N log (AILE of innovation variance)
+ 20 + 9.

The results are AIC(3,2) = 19272, AIC(4,3) = 66.54,
AIC(4,4) = 67.44, AIC(5,3) = 67.48 AIC(6,3) = 67.65,
and AIC(54) = 69.43. The minimum is attained at
p = 4 and ¢ = 3 which correspond to the true structure.
Fig. 1 illustrates the estimates of the power spectral
density obtained by applying various procedures to this
set of data. It should be mentioned that in this example
the Hessian of the mean log-likelihood function becomes
singular at the true values of the parameters for the
models with p and ¢ simultaneously greater than 4 and 3,
respectively. The detailed discussion of the difficulty
connected with this singularity is bevond the scope of the
present paper. Fig. 2 shows the results of application of
the same type of procedure to a record of brain wave with
N = 1420. In this case only one AR-MA model with AR
order 4 and MA order 3 was fitted. The value of AIC of
this model is 1145.6 and that of the MAICE AR model is
1120.9. This suggests that the 13th order MAICE AR
model is a better choice, a conclusion which seems in
good agreement with the impression obtained from the
wspection of Fig. 2.

VII. Disctssioxs

When f(z!0) is very far from g(z), S(g;f(-18)) is only a
subjective measure of deviation of f(.r.[e) from ¢(zx). Thus
the general discussion of the characteristies of NMAICE
will only be possible under the assumption that for at
least one family f(zi6) is sufficiently closed to g(x) com-
pared with the expected deviation of f(z'6) from f(z|6).
The detailed analysis of the statistical characteristies of
AAICE is only necessary when there are several families
which satisfy this condition. As a single estimate of
—2NES(g:£(-16)), —2 times the log-maximum likelihood
will be sufficient but for the present purpose of “estimating
the difference” of —2NES(g;f(- té)) the introduction of the
term —+2k into the definition of AIC is crucial. The dis-
appointing results reported by Bhansali [26] were due to
his incorrect use of the statistie, equivalent to using 4k
in place of 42k in AIC.

When the models are specified by a successive increase
of restrictions on the parameter 8 of f(.rlt‘)) the MAICE
procedure takes a form of repeated applications of con-
ventional log-likelihood ratio test of goodness of fit with
automatically adjusted levels of significance defined by
the terms +2k. When there are different families approxi-
mating the true likelihood equally well the situation will
at least locally be approximated by the different para-
metrizations of one and the same family. FFor these cases
the significance of the difference of AIC’s between two
models will be evaluated by comparing it with the vari-
ability of a chi-square variable with the degree of freedom
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Fig.1. Estimates of an AR-MA spectrum: theoretical spectrum (solid thin line with dots), AR~MA estimate (thick
line), AR estimate (solid thin line), and Hanning windowed estimate with maximum lag 80 (crosses).
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Fig. 2. Estimates of brain wave spectrum: AR-MA estimate (thickline), AR estimate (solid thin line), and Hanning
windowed estimate with maximum lag 150 {crosses).
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equal to the difference of the &’s of the two models. When
the two models form separate families in the sense of Cox
[42], [43] the procedure developed by Cox and extended
by Walker [44] to time series situation may be useful for
the detailed evaluation of the difference of AIC.

It must be clearly recognized that MAICE can not be
compared with a hypothesis testing procedure unless the
latter is defined as a decision procedure with required
levels of significance. The use of a fixed level of significance
for the comparison of models with various number of
parameters is wrong since this does not take into account
the increase of the variability of the estimates when the
number of paramcters is increased. As will be seen by the
work of Kennedy and Bancroft [45] the theory of model
building based on a sequence of significance tests is not
sufficiently developed to provide a practically useful
procedure.

Although the present author has no proof of optimality
of MAICE it 1s at present the only procedure applicable to
every situation where the likelihood can be properly
defined and it is actually producing very reasonable results
without very much amount of help of subjective judgement.
The successful results of numerical experiments suggest
almost unlimited applicability of MAICE in the fields of
modeling, prediction, signal detection, pattern recognition,
and adaptation. Further improvements of definition and
use of AIC and numerical comparisons of MAICE with
other procedures in various specific applications will be
the subjects of further study.

VIII. CoxcrLusioN

The practical utility of the hypothesis testing procedure
as a method of statistical model building or identification
must be considered quite limited. To develop useful
procedures of identification more direct approach to the
control of the error or loss caused by the use of the identi-
fied model is necessary. From the success of the classical
maximum likelihood procedures the mean log-likelihood
seems to be a natural choice as the ecriterion of fit of a
statistical model. The MAICE procedure based on AIC
which is an estimate of the mean log-likelihood provides a
versatile procedure for the statistical model identification.
It also provides a mathematical formulation of the prin-
ciple of parsimony in the field of model construction.
Since a procedure based on MAICE ean be implemented
without the aid of subjective judgement, the sueccessful
numerical results of applications suggest that the imple-
mentations of many statistical identification procedures
for prediction, signal detection, pattern recognition, and
adaptation will be made practical with NAICE.
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Some Recent Advances in Time Series Modeling

EMANUEL PARZEN

Abstract—The aim of this paper-is to describe some of the impor-
tant concepts and techniques which seem to help provide a solution
of the stationary time series problem (predictionh and model iden-
tification). Section I reviews models. Section II reviews predic-
tion theory and develops criteria of closeness of a ‘‘fitted’’ model to
a ‘“‘true’’model. The central role of the infinite autoregressive trans-
fer function ¢, is developed, and the time series modeling problem
is defined to be the estimation of g.. Section III reviews estimation
theory. Section IV describes autoregressive estimators of ge.
It introduces a criterion for selecting the order of an autoregressive
estimator which can be regarded as determining the order of an
AR scheme when in fact the time series is generated by an AR
scheme of finite order.

I. INTRODUCTION

"HE aim of this paper is to describe some of the im-

portant concepts and techniques which seem to me
to help provide realistic models for tlie processes generating
observed time series.

Section IT reviews the types of models (model concep-
tions) which statisticians have developed for time series
analysis and indicates the value of signal plus noise de-
compositions as compared with simply an autoregressive-
moving average (ARMA) representation.

Section IIT reviews prediction theory and develops
criteria of closeness of a “fitted” model to 4 “true” model.
The central role of the infinite autoregressive transfer
function g, is developed, and the time series modeling
problem is defined to be the estimation of g..

Section III reviews the estimation theory of autore-
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gressive (AR) schemes and the basic role of Yule—Walker
equations. It develops an analogous theory for moving
average (MA) schemes, based on the duality between f(w),
the spectral density and inverse-spectral density, and
R(v) and Ri(v), the covariance and covarinverse. The
estimation of Ri(») is shown to be a consequence of the
estimation of g..

Section V describes autoregressive estimators of ¢.. It
introduces a criterion for selecting the order of an auto-
regressive estimator which can be regarded as determining
the order of an AR scheme when in fact the time series is
generated by an AR scheme of finite order.

I1. Trve SeEriEs MobpELS

Given observed data, statistics is concerned with in-
ference from what was observed to what might have been
observed: More precisely, one postulates a probability
model for the process generating the data in which some
parameters are unknown and are to be inferred from the
data. Statistics is then concerned with parameter inference
or parameter identification (determination of parameter
values by estimation and hypothesis testing procedures).

A model for data is called structural if its parameters
have a natural or structural interpretation; such models
provide explanation and control of the process generating
the data.

When no models are available for a data set from theory
or experience, it is still possible to fit models which suffice
for simulation (from what has been observed, generate
more data similar to that observed), prediction (from what
has been observed, forecast the data that will be observed),
and pattern recognition (from what has been observed, infer



